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ABSTRACT

This paper addresses the analysis of uncertainty in the
output of computer models arising from uncertainty in
inputs (parameters). Uncertainty of this type, which is
separate and distinct from the randomness of a stochas-
tic model, most often arises when proper input values
are imprecisely known. Uncertainty in the output is
quantified in its probability distribution, which results
from treating the inputs as random variables. The as-
sessment of which inputs are important with respect to
uncertainty is done relative to the probability distribu-
tion of the output.

1 INTRODUCTION

The evaluation of models in the form of computer codes
(computer programs) becomes more important when
the models are used in making decisions that have far
reaching effects. For example, the complex models
used to study global warming, nuclear reactor safety,
and environmental safety and restoration provide vi-
tal input to regulatory agencies, whose decisions have
large impact on our lives. Although models like those
used for policy decisions in government vary widely
in their mathematical form, they share some important
characteristics. Namely, they often “predict” or calcu-
late things one hopes never to observe, for example, se-
rious accidents at nuclear reactors. Secondly, they are
functions of many inputs for which costly data collec-
tion may be required to determine appropriate values,
ranges and so forth. Finally, the relationship between
inputs and output is complex.

There are many aspects to the evaluation of the
quality of output of a model. The subject addressed
in this paper concerns uncertainty in the output attrib-
utable to uncertainty in model inputs (or parameters).
Within this area, discussion will focus on the sensitivity
or importance of the inputs.

2 UNCERTAINTY AND SENSITIVITY

The more traditional, historical approach to sensitivity
is founded in the derivative of the output with respect

to each input. As an alternative to numerical calcula-
tion, Oblow (1978) and Oblow, Pin and Write (1986)
use a technique whereby the capability of calculating
derivatives is added to the model using a precompiler
called GRESS. Methods from regression are also used,
including correlation coefficients, by McKay, Conover
and Whiteman (1976), and Iman, Helton and Camp-
bell (1981a, 1981b). Another approach is to look at
the output as a random variable and try to find a mean-
ingful decomposition of variance based on the inputs.
Fourier methods of Cukier, Levine and Shuler (1978)
and, later, Pierce and Cukier (1981) are in this class.
In general, these methods appeal to a series expansion
of the output, as does the usual propagation of error
method which uses a linear expansion of the output in
the inputs.

The notion that the variance of the output is a
meaningful quantity in assessing importance fits very
well with approach taken in this paper, namely, that
the importance of inputs can be view with respect to
uncertainty in the output. We are interested in the type
of uncertainty that can be characterized as being due to
the values used for the inputs. A related uncertainty,
due to the structure or form of the model itself, is
not addressed explicitly. Neither are we concerned
with uncertainty due to errors in implementation of
the model on a computer. On the other hand, it is
certainly acceptable that the calculation might have
the randomness of a stochastic process, for which the
output of the model is taken as being the cumulative
distribution function of the observable output value. In
any case, the quantity of interest for uncertainty is the
probability distribution of the model output, which is
determined by that of the inputs and the transformation
of inputs to output via the model. The sensitivity and
importance of inputs we want to look at is that relative
to the probability distribution of the model output.

3 MATHEMATICAL FRAMEWORK

The uncertainty in the output focused on is that attribut-
able to the inputs. Models often have multiple outputs
that can be functions of coordinates of time and loca-
tion. So as not to needlessly complicate the issue, we
consider the case of a single scalar output. LetY de-
note the calculated output, which depends on the input
vector,X, of length p through the computer model,



h(•). Because proper values of the components of X
may be unknown or imprecisely known, or because, in
some cases, they can only be described stochastically,
it is reasonable to treat X as a random variable and to
describe uncertainty about X with a probability distri-
bution. Uncertainty in the calculation Y is captured by
its own probability distribution, which is the quantity
under study. In summary, then,

Y = h(X)

X � fx(x) ; x�R
p

Y � fy(y) :

(1)

For now, we treat fx as known, although in practice,
knowledge about it is at best incomplete.

We look to the probability distribution, fy, for an-
swers to the question “What is the uncertainty in Y ?”
That is to say, we can use the quantiles of the distri-
bution of Y to construct probability intervals. Alter-
natively, one might use the variance of Y to quantify
uncertainty. In either case, under the assumption that
fy can be adequately estimated, questions answerable
with quantiles or moments are covered. However, as
has already been mentioned, the issue of how well fx
is known will surely have to be addressed in practice.

Questions of importance of inputs are relative to
the probability distribution of Y . That is, they are
questions like “Which variables really contribute to (or
affect) the probability distribution of the output?” The
meaning of importance is given in somewhat of a back-
wards way as being the complement of unimportant.
We say that a subset of inputs is unimportant if the
conditional distribution of the output given the subset
is essentially independent of the values of the inputs
in the subset. These ideas are now examined in more
detail.

Suppose that the vector X of inputs is partitioned
into X1, to be the important components, and X2, to be
the unimportant ones. Corresponding to the partition,
we write

Y = h(X)

= h(X1; X2) :
(2)

Furthermore, we assume that X1 and X2 are stochas-
tically independent, meaning that

Xi � fi(xi) ; i = 1; 2

fx(x) = f1(x1)f2(x2) :
(3)

We address the question of the unimportance of X2 by
looking at the conditional distributions

fyjx2 = distribution Y givenX2 = x2 (4)

as compared to fy , and

fyjx1 = distribution Y givenX1 = x1 (5)

for different (all?) values of x1 and x2. We say that
X2 is unimportant if fy and fyjx2 are not substantially
different for all values of X2 of interest. Similarly, we
say that X1 contains all the important inputs if X2 is
unimportant. Of course, the actual way to compare fy
and fyjx2 must be determined.

Alternatively, comparisons could be made among
the distributions fyjx1 . Although these distributions are
examined, we currently focus on fyjx2 because there is
a useful reference distribution, namely, fy .

The term “screening” is used to mean an initial
process of separating inputs X into X1, potentially
important ones, and X2, potentially unimportant ones.
The process could resemble a subset selection proce-
dure in regression, in as much as the objective is to
select a subset of input variables that “explains” the
probability distribution of the output. In the next sec-
tion, a simple method of partitioning the inputs will be
discussed.

4 A SIMPLE SCREENING HEURISTIC

The following is a simple, two-step screening process.
The first step is to partition X into a set of “ important”
components, X1, and a set of “unimportant” compo-
nents, X2. The second step is a partial validation to
estimate how the components in X2 actually change
fyjx2 , to be used to decide if X2 is really unimportant.

4.1 Partitioning the Input Set

X2, a subset of X, is (completely) unimportant
when the marginal distribution of Y , equals the condi-
tional distribution of Y given X2.

fy = fyjx2 for all values of X2 (6)

A way to get an idea of how closely the equality in Eq.
(6) holds is through the variance expression Eq. (7)
which expresses the marginal variance of fy in terms
of the conditional mean and variance of fyjx2 . The
variance of Y can be written as

V [Y ] = E[V [Y j X2]] + V [E[Y j X2]] : (7)

Equality of the marginal and conditional distributions
in Eq. (6) implies that the conditional mean and vari-
ance are equal to their marginal counterparts for all
values of X2. Specifically, the variance (over X2) of
the conditional expectation in Eq. (7) is zero. It is
unlikely, of course, that any (realistic set) of the inputs
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is completely unimportant. Therefore, the equality be-
tween marginal and conditional quantities will be true
only in approximation, with the degree of approxima-
tion linked to the level of acceptance of the difference
between the marginal and conditional distributions of
the output, Y .

By inference, if X1, the complement to X2, is
(completely, singly) important, the conditional variance
of Y given X1 is zero, and the variance of the condi-
tional expectation of Y given X1 is the marginal vari-
ance. As before, these relations usually will hold only
in approximation. Nevertheless, a comparison of terms
in Eq. (7) will offer a way to look at the degree of
importance.

The variance decomposition in Eq. (7) suggests
a related identity from a one-way analysis of variance,
in which the total sum of squares is written as the sum
of two components, a “between level” component and
a “within level” component. The analysis of variance
approach can be used to suggest which components of
X belong in X1 and which in X2. We replicate, r
times, a Latin hypercube sample (LHS) of size k. The
same k values of each component of X will appear in
each replicate but the matching within each one will be
done independently. The k values correspond to the k
levels in the sum of squares decomposition.

In an LHS as introduced by McKay, Conover and
Beckman (1979), when the inputs are continuous and
stochastically independent, the range of each compo-
nent of X is divided into k intervals of equal probabil-
ity content. For a true LHS, a value is selected from
each interval according to the conditional distribution
of the component on the interval. For this application,
it will be sufficient to use the probability midpoint of
the interval as the value. The k values for each input
are matched (paired) at random to form k input vectors.
For the replicates needed in this screening heuristic, r
independent combinations of the same values are used
to produce the n = k � r input vectors in total.

A design matrix, M , for an LHS is given in Eq.
(8). Each column contains a random permutation of
the k values for an input. Each row of the matrix
corresponds to a random matching of values for the p
inputs used in a computer run.

M =

2
664

v11 v12 . . . v1p
v21 v22 . . . v2p

...
...

...
...

vk1 vk2 � � � vkp

3
775 (8)

A design matrix for any of the r replicates in this
application is obtained by randomly and independently
permuting the values in every column of M .

After making the n computer runs using replicated
LHS, we begin by looking at the components of X one
at a time. Let U denote a component of interest in X,
and denote the k values of U by u1; u2; . . . ; uk. The
n values of the output are labeled by yij to correspond
to the ith value ui, in the jth replicate (sample). The
sum of squares partition corresponding to the input U
takes the form

kX
i=1

rX
j=1

(yij � y)
2
=r

kX
i=1

(yi � y)
2

+
kX

i=1

rX
j=1

(yij � yi)
2

SST = SSB + SSW

(9)

where

yi =
1

r

rX
j=1

yij and y =
1

k

kX
i=1

yi :

A statistic that can be used to assess the impor-
tance of U is R2 = SSB=SST. Although R2 is bounded
between 0 and 1, the attainment of the bounds is not
necessarily a symmetric process. The upper bound is
reached if Y depends only on U . In that case, for any
fixed value of U , say ui, the value of Y will also be
fixed, making SSW equal to 0. As a result, R2 will be
1. On the other hand, if Y is completely independent
of U , SSB (and, therefore, R2) is not expected to be 0.
We now examine this last point in more detail.

In general, the probability distribution of R2 will
be unknown. To gain insight, however, suppose that
we arbitrarily partition a random sample of size n
from a normal distribution to form R2. (An arbitrary
partition would correspond to Y independent of U .)
The expected value of R2 is (k � 1)=(n � 1), which
goes to zero with k=n as n increases. Thus, one might
consider (k � 1)=(n� 1) as a working lower bound
associated with a completely unimportant input.

Issues that still need to be addressed include the
apportionment of n between r and k, the extension
of the design and decomposition to more than one
component at a time, and the interpretation of values
of R2.

Whether or not one uses R2 or additional methods
to develop the sets X1 and X2, there remains the issue
of evaluating the partition to see how effective it is in
satisfying Eq. (6). In fact, iterating between a partition
and validation is what one would do in practice. The
next section discussion validation.
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4.2 Validation of the Partition

Very simply stated, the validation step looks at X1

and X2 and tries to assess how well the partition meets
the objective of isolating the important inputs to X1.
We propose using a very elementary sequence of steps
that begins with a sample design resembling Taguchi’s
(1986) inner array/outer array.

1. Select a sample, S2, of the X2s and a
sample, S1, of the X1s.

2. For each sample element x2 2 S2, ob-
tain the sample of Y corresponding to
fx2 
 S1g.

3. Calculate appropriate statistics for each
sample in Step 2, e.g., Y (x2); s2y(x2)

and bFyjx2 .

4. Compare the statistics and decide if the
difference x2 makes is acceptable.

The differences seen in the statistics in Step 4 are
due only to the different values of x2 because the
sample values for X1 are the same in each. Hence,
the comparisons are reasonable.

The reliability of any validation procedure needs
to be evaluated. In this case, S2 may not adequately
cover the domain of X2, particularly as the dimen-
sion of X2 increases. Merely increasing the size of
S2 may not be an acceptable solution if the increase
in the number of runs to generate the sample of Y s
becomes impossible to accommodate. Inadequate cov-
erage can be due to two reasons. First, regions where
the conditional distribution of Y really changes with
X2 alone may be missed. Second, there may be re-
gions where the interaction between X2 and X1 in the
model has a significant impact on the conditional dis-
tribution of Y . Although it has obvious deficiencies,
LHS is an appropriate sampling method for generating
S2 because it provides marginal stratification for each
input in X2, meaning that the individual ranges within
the components likely have been sampled adequately.
Whether or not interaction between X1 and X2 will be
detected is unknown. As an alternative to LHS, one
might use an orthogonal array as described by Owen
(1991), which provides marginal stratification for all
pairs of input variables.

5 A SIMPLE EXAMPLE

In practice, the model implemented in a computer code
will not be expressible in closed form. As an example,
however, suppose that the inputs, X, and the output,

Y , are described by

Y = b1X1 + b2X2

Xi � N
�
�i; �

2

i

�
:

(10)

Now, suppose that X2 is presumed unimportant and
look at some ramifications of the assumption for this
simple model. By unimportant, we mean that the
conditional distribution of Y given X2 is approximately
the marginal distribution of Y for all values of X2.
Because the model in this example is known,

fy = n
�
b1�1 + b2�2; b

2

1
�2
1
+ b2

2
�2
2

�

fyjx2 = n
�
b1�1 + b2x2; b

2

1
�2
1

�
:

(11)

Clearly, the two distributions are not exactly the same
for all values of X2. Nevertheless, if X2 is set to its
mean value, then the difference in the distributions lies
in the variance, and that the marginal variance of Y

will be larger than the conditional one. Thus, if X2

is treated as unimportant and set to its mean value for
the purpose of running the code, the effect will be to
reduce the variance of the output.

At this stage in partitioning X into X1 and X2, all
we know is that fyjx2 is somewhat different from fy ,
and that the difference can be restricted to a difference
in variances if X2 is set to its mean. If a suitable
cost function can be constructed, one could assess
differences between the quantiles of the marginal and
conditional distributions.

6 APPLICATION

These methods were applied in a cursory preliminary
fashion in the analysis of a compartmental model used
to describe the flow of material in an ecosystem. The
model calculates concentrations in 15 subsystems, or
compartments, as functions of time. For presentation,
we have chosen to study the concentration, Y , in one of
the compartments at time corresponding to system equi-
librium. The flow among compartments, diagrammed
in Figure 1, is modeled by a system of linear differ-
ential equations. We take as inputs X to the model
the 82 constants, called “ transfer coefficients,” in the
equations.

After identifying the model output and inputs, in-
dependent beta probability distributions, fx, were as-
signed to the inputs. The beta family of distributions
was used because of the wide range in shapes it ac-
commodates. We used only unimodal shapes (none of
the U-shaped forms) which included symmetric forms
and very skewed ones. Parameters of the distributions
were inferred from range, best estimate and quantile
values obtained from subject-area scientists.
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Figure 1. Compartment model

At each stage in the analysis we used a sample
size of n = 1000 made up of r = 10 replicates of an
LHS of size k = 100, as described in Section 4. We
do not suggest either adequacy or minimal sufficiency
in the sample size parameters chosen. We picked the
numbers hoping that the results would be interpretable,
and, if that had not been the case, we would have done
something else. We were not concerned with computer
time.

The LHS of size k = 100 meant that the range
of each input was divided into 100 intervals of equal
size in probability. Rather that sampling within each
interval, we chose to use the interval midpoint as the
“sampled” value. The model input vectors for each
replicate was constructed by randomly selecting, with-
out replacement, values for each of the 82 inputs. Thus,
the replicates differed not in the values used for each
individual input, but in the random combinations of 82
values across inputs.

From the first set of 1000 runs, the probability
distribution of Y , fy, created when all 82 inputs are
free to vary was estimated. The density function is
given in Figure 2 and repeated in Figures 3 and 4 for
comparisons. In an iterative manner, we selected inputs
as important using R2 from the sum of squares partition
in Eq. (9). In all subsequent iterations, sample values
for selected inputs are replaced by nominal values in
the input design. The iteration was repeated 4 times,
for which 7 of the 82 inputs were selected as possibly
being important.

To see how well the selection procedure is work-
ing, we look at 2 sets of density functions. First of
all, we investigate whether any important inputs have
been missed by looking at fyjx2 , which describes Y

as a function of X1 (the “ important” inputs) for fixed

0 20 40 60 80 100

mg/Kg Sediment Dead Organic Matter

Figure 2. Density function fy

0 20 40 60 80 100

all variables free
unimportant fixed

mg/Kg Sediment Dead Organic Matter

Figure 3. Density functions fyjx2 for
10 values of unimportant inputs X2

values of X2 (the “unimportant” inputs). If this den-
sity looks like fy (when all variables are “ free” ) for all
reasonable values of X2, we are satisfied no important
inputs have been missed. Figure 3 makes the compari-
son for 10 values of X2 (actually, from another LHS).
The figure indicates acceptable agreement for 8 of 10
values. For 2 of the values of X2, the agreement be-
tween fy and fyjx2 is not as close, and further analysis
may be prudent.

To see how the set X1 affects Y , we look at
fyjx1 for 10 values of X1 (from another LHS). These
densities are presented in Figure 4. Fixing X1 produces

–5–



densities quite different for the marginal density of Y .
We do not know at this point, however, whether the set
X1 contains extraneous inputs.

0 20 40 60 80 100

all variables free
important fixed

mg/Kg Sediment Dead Organic Matter

Figure 4. Density functions fyjx1 for
10 values of important inputs X1
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